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Abstract:  This study analyzed the Sprott I system through synchronization using active backstepping control, circuit 

realization and demonstrated its application to secure communication. The feasibility of the theoretical model of 

the Sprott I system was verified with the useful resource of the electronic circuit designed. Two identical Sprott I 

chaotic systems evolving from different initial conditions were globally synchronized by designing a nonlinear 

feedback controller using active backstepping technique. The controller was shown to effectively synchronize the 

Sprott I systems when activated. The application of the results to secure communication was presented numerically 

by synchronizing two chaotic Sprott I systems with a variable of the drive being encrypted information via a 

coupling channel. The encrypted signal was a superposition of sinusoidal information specified by a periodic 

function and chaotic carrier generated from a variable of the chaotic Sprott I system using additive encryption 

masking scheme. The transmitted information signal was shown to be retrievable from the chaotic response signal 

by inverse function decryption algorithm, thus confirming the effectiveness and robustness of the controller. 
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Introduction 

Edward Lorenz discovered inherent unpredictability (irregular 

motion with high sensitivity to initial conditions) and an 

associated structure called “butterfly effect” in a 3D weather 

model, and that was the first experimentally verified chaotic 

system (Lorenz, 1963). The butterfly effect is a manifestation 

of structure in chaos and it is a preliminary result in the 

studies of geometrical complexity known as fractal. This 

effect has made Lorenz system to serve as a prototype model 

for studying chaos for a long time. Due to diversity of 

complex systems in real-world applications, many other 

chaotic structures has been identified, this includes Rossler 

system (Rössler, 1976), Chen system (Chen & Ueta, 1999), 

Chua circuit (Tlelo-Cuautle & Duarte-Villaseñor, 2007), 

Sprott systems (Sprott, 1994), Sundarapandian systems 

(Sundarapandian & Pehlivan, 2012; Sundarapandian, 2013), 

Jerk system (Sambas et al., 2015) and Financial systems (Cai 

& Huang, 2007; Yu-shu & Jun-hai 2001). Chaotic systems 

have several applications in the area of sciences, engineering, 

social sciences, chemical reactors, neural networks, robotics, 

information science, signal processing, financial economics, 

secure communication (Volos et al., 2016; Vaidyanathan, 

2015; Jafarov et al., 2016; Yu et al., 2016; Idowu et al., 2018; 

Onma & Akinlami, 2017). In general, a nonlinear 

deterministic system with complex noise-like behavior 

characterized by limited predictability in the long time scale 

and high sensitivity to initial conditions is a chaotic system 

(Kurths et al., 2003). This aperiodic behavior usually makes 

long-term predictions nearly impossible, and until recently, 

made chaotic systems undesirable, and the dynamics are to be 

eliminated in most practical applications. On the other hand, 

the ability of chaos to achieve a robust desired state through 

the amplification of small perturbation makes chaotic systems 

useful. Hence, the need for control through an established 

sequential structure that stabilizes targeted unstable periodic 

orbits to their equilibrium points through small time-

dependent perturbations in any of the system’s accessible 

variable or parameter, thereby improving the quality of the 

system behavior (Kurths et al., 2003). 

Controlled chaos and synchronization (forcing of two or more 

systems to cooperate with each other) of chaotic systems are 

generally advantageous and highly useful in many real-world 

applications including secure communication, earthquake 

dynamics, fluid mixing, time series analysis, heating and 

modeling brain and cardiac rhythm activities. The 

synchronization of chaos between master and slave chaotic 

systems which can simply be interpreted as transmitter and 

receiver relationship has been an area of recent research due 

to its potential applications in secure communication as an 

alternative to classical cryptography. Several control schemes 

have also been developed for the control of chaotic systems, 

such as active control (Sundarapandian, 2013), adaptive 

control (Lu & Cao, 2005; Onmaet al., 2016; Tirandaz & 

Hajipour, 2017), backstepping control (Vincent, 2008; Njah, 

2010; Vincent et al.,2011), sliding mode control (Jang et al., 

2002; Nazzal & Natsheh, 2007; Vaidyanathan & Rhif, 2017), 

fuzzy control (Calvo& Cartwright, 1998; Hai-Peng, 2002), 

impulsive control (Chenetal., 2004; Hua-Guang et al., 2009), 

time-delay feedback (Park& Kwon, 2003), linear state error 

feed-back approach (Jiang, 2002) and finite-time control 

(Xiao-dong, 2009). Also, synchronization modes such as 

multiswitching combination synchronization, asymptotic 

synchronization, lag synchronization, cluster synchronization 

[(Hongmin & Qionghua, 2019) and references there in] have 

been adopted. 

In practical applications, the design and implementation of 

chaos through simple physical systems such as electrical 

circuits has received a great deal of attention from scientists 

and engineers (Hongmin & Qionghua, 2019; Vaidyanathan, 

2017), not only because of the potential positive implications 

of matching theories with experimental realizations, but also 

the possible real-world applications in diverse chaos-based 

advance technologies such as chaotic ratchets and memristors, 

and in information technologies. In view of the wide scope of 

possible applications of chaotic systems, this aspect remains 

an area of intensive research both to the theorists and control 

engineers. In a bid to generate chaotic systems that have real-

world applications, Sprott embarked on a comprehensive 

quest to develop autonomous, 3D chaotic structures, however, 

among the many generated, only 19 cases (classified as 'A' to 

'S') were found to be distinct(Sprott, 1994), and  among this 

unique set only a few have electronic circuit design and 

potential practical applications. The control and 

synchronization of some of these Sprott systems has already 

been achieved, for instance, Vaidyanathan synchronized 

identical Sprott L and identical Sprott M systems, and non-

identical Sprott L and M systems using active control 

(Vaidyanathan, 2012a) and adaptive control methods 
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(Vaidyanathan, 2012b). Synchronization based on other Sprott 

systems including Sprott E (Wang et al., 2014), J (Islam et al., 

2015), K (Vaidyanathan , 2012c), A (Yılmaz & Ihsan, 2010; 

Melendez-Cano et al., 2017), B (Melendez-Cano et al., 2017), 

C (Melendez-Cano et al., 2017), H (Cicek et al., 2013; 

Melendez-Cano et al., 2017), and R (Melendez-Cano et al., 

2017) has also been implemented. However, since no 

generalized results for the synchronization of chaotic systems 

of the same family (in this case the Sprott systems) has been 

achieved, it is necessary to consider new results for the 

synchronization of other Sprott systems that has not been 

implemented. 

In this study, we realized the circuitry of Sprott I using OP-

AMPS and appropriate circuit components in Multisim 

environment, and implemented it physically to observe the 

attractors on digital oscilloscope, designed an effective 

nonlinear controller 𝑢𝑖(𝑡)which makes the state variables of 

the response (slave) system align (cooperate) with the 

variables of the drive (master) system, and stabilize the error 

vector of the state variables at the origin for all future state in 

finite time such that ‖𝑒𝑖(𝑡)‖lim 𝑡→∞ = 0 (its synchronization) 

via active backstepping scheme.  

 

Model Description 

The nonlinear system considered in this work is a Sprott 

chaotic system modeled as coupled first order ordinary 

differential equations of the form 

,2 zyxz

zxy

ayx













    (1) 

where the dot   denotes differentiation with respect to time. 

The SprottI system (Eqn. (1)) has a quadratic term and a 

positive real constant parameter  with yx, and as the 

state variables. When , the system exhibits complex 

behavior with chaotic attractors depicted on a phase plot as 

shown in Fig. 1. 

 

 

 

Fig. 1: Numerical results for the phase space attractors of Sprott I chaotic system with parameter 2.0a , presented 

for (a) yx   plane, (b) zy   plane and (c) zx  plane 

 

 

The equilibrium of system (1) satisfies the following 

equations: 
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Obviously, )0,0,0(0 E is a unique equilibrium. For this 

reason, system (1) is linearized at equilibrium 0E and the 

Jacobian matrix is given by: 
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The eigenvalues of equation (3) is obtained from

00  JI , that is  
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The Eigen values of the Jacobian matrix of system (1) at 

equilibrium point )0,0,0(0 E are calculated as: 

i58996.006725.0,13449.1 3,21   . 

This analysis is in agreement with already established 

description of the Sprott I system (Sundarapandian, 2012). 

 

 

Electronic Circuit Implementation 

In this section, we present the electronic circuit realization of 

Sprott I chaotic system (1) in order to view its attractors using 

MultiSIMvirtual electronic simulator and physically observe 

them on a digital oscilloscope from an assemblage of real 

electronic components. Each of the state variable yx, and z
of system (1) is scaled to obtain suitable attractors within the 

dynamic range of operational amplifiers. An analogue 

circuitry designed in MultiSIM 14 software is displayed in 

Fig. 2a. The circuit consists of three channels which realize 

the integration addition and substation of the state variables 

 and . The electronic circuit comprises electronic 

components such as resistors, capacitors and operational 

amplifiers, and an analog multiplier is used to execute the 

square function of the nonlinear term of the model. The 

multiplier operates over a dynamic range of ±1V with typical 

tolerance of less than 1%. The output signal (W) is connected 

a z

2.0a

yx, z
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to those at inputs (+X1), (− X2), (+Y1), (−Y2), and (+Z) using 

the expression; 

𝑊 =
(𝑋1−𝑋2)(𝑌1−𝑌2) 

10
+ 𝑍. The circuital equation of the 

designed circuit shown in Figure 2 is obtained from 

Kirchhoff’s laws, and it is given by; 

,
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           (5) 

where and  are the voltages passing across 

the capacitors  and , respectively. The operational 

amplifiers used in the circuit are TL082CD and AD333JN was 

used as the multiplier of which the power supplies are

. We set the values of the circuital components as 

follows:   C1 = C2 = C3 = 10nF, R1= 50KΩ, R2 = R3 = R4 = R6 

= 10 KΩ and  

R5 = R7= R8 = R9 =R10 = 1 KΩ. 

 

 

 

 

 
Fig. 2: (a) Schematic electronic circuit diagram of Sprott I chaotic system (b) Analog electronic hardware 

implementation of Sprott-I chaotic system 

 

 

 
Fig. 3: The Phase space attractors of Sprott I chaotic system (1) as obtained from the oscilloscope of the MultiSIM circuit 

simulator for (a) yx   plane (b) zy   plane and (c) zx  plane with capacitors C1 = C2 = C3 = 10nF,  resistors R1= 

50KΩ, R2 = R3 = R4 = R6 = 10 KΩ and R5 = R7= R8 = R9 =R10 = 1 KΩ 
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Fig. 4: The physical realization of the phase space attractors of Sprott I system (1) using off-the-shelf components as 

shown on the real oscilloscope (a) yx   plane (b) zy   plane and (c) zx  plane with capacitors C1 = C2 = C3 = 

10nF, resistors R1= 50KΩ, R2 = R3 = R4 = R6 = 10 KΩ and R5 = R7= R8 = R9 =R10 = 1 KΩ 

 

 

Using the circuit design approach based on operational 

amplifiers, the results presented in Fig. 3 display the various 

phase portraits of chaotic Sprott I system (1) when  

as obtained in MultiSIM. It is obvious that the obtained 

oscilloscope results in Figures 3(a)--(c)are good realizations 

of the attractors presented for the numerical simulations 

shown in Figure 1(a)--(c), respectively and this confirms the 

feasibility of physically realizing the theoretical model using 

real electronic components. Having obtained promising results 

for both the numerical and the electronic simulations on 

MultiSIM, we afterwards, performed some laboratory 

experiments where the designed circuit in Fig. 2(a) was 

physically implemented on a breadboard (Fig. 2(b)). Fig. 4 

depicts the oscilloscope results for the phase space attractors 

of the experimental realization. These results (Fig. 4(a-c) are 

in good agreement with the numerical and electronic 

simulations shown in Figures 1 and 3, respectively. With 

these results, we have physically implemented the Sprott I 

chaotic system. Next, we propose an active backstepping 

controller in other to synchronize two identical Sprott I 

systems with one being the drive (master) and the other is the 

response (slave).  

 

Results and Discussion 

Active backstepping synchronization for two identical 

chaotic sprott systems 

To demonstrate the effectiveness of the active back-stepping 

synchronization scheme proposed herein, the control input is 

designed via active back-stepping technique to synchronize 

two identical Sprott chaotic systems: 

First, we rewrite the system (Equation (1)) as 

.3
2
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312

21

xxxx
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axx


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





   (6) 

Equation (6) is used as the drive or transmitter, and the 

response or receiver is given by 
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Where the control inputs are represented as

)(),(),( 321 tututu . The synchronization error vector is 

obtained by subtracting equation (7) from equation (6), and 

using the usual notation , it is given by 

.2 33
2
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     (8) 

 

The first equation in equation (8) is stabilized by regarding 

2e  as a virtual controller. By selecting the Lyapunov function 

2

111
2

1
)( eeV   and differentiating it along the trajectory of 

time, we obtain 

].[)( 1211111 uaeeeeeV     

(9) 

 

The controller 2e  is estimated as ),( 112 ee   hence 

equation (9) becomes ].)([)( 111111 ueaeeV 
 

With the choice of 111 )( ee   and 01 u ,  

2

11 aeV  (negative definite). 

The error 2  between 2e  and )( 11 e  is defined as: 

121122 )( eeee  
  (10) 

 

Substituting 2e , 1e  and 2e  from equations (8) and (9), 

respectively into the time derivative of equation (10) yields 

.)( 212312 ueaee   (11) 

The subsystem ),( 21 e  given by equation (11) is stabilized 

as follows: By regarding the Lyapunov function 2V  as; 

2

211212
2

1
)(),(   eveV   of which the time 

derivative is given in equation (12). 
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From equations (9) and (10), 

.21
2
11  aeaev    (13) 

Hence, 

])([),( 212312
2
1212 ueaeeaeeV 

  
 (14) 

 

If 3e is measurable and estimated as ),( 2123  ee  , the 

equation (12) becomes; 

])(),([),( 21221212

2
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If 0),( 212  e and )2( 212 aeu  , then 

2

2

2

12 aaeV   (negative definite, since 0a ). 

Finally, the complete system ),,( 321 e  is stabilize by 

regarding error between 3e and ),( 212  e as 3 . 

.),( 321233 eee   (15) 

The substitution of 3e , 3e  and 2e  from equations (8), (15) 

and (10), respectively  into the time derivative of equation 

(15) gives 

33

2
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  (16) 

The Lyapunov function 3V is defined as 

,
2

1
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32123213  eveV  and its time 

derivative is given by; 3323213 ),,(    veV . 

Hence, 
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If ])()(2[ 22

1212213 eexeu   , then 

equation (17) reduces to;  

2
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(negative definite). 

Therefore, the control units necessary for the synchronization 

of the identical Sprott I systems are given by 

],)()(2[
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and the synchronization norm e  can be computed by 

.2
3

2
2

2
1 eeee     (19) 

 

The classical Fourth-Order Runge-Kutta routine was used to 

solve systems (6) and (7) with the control inputs as defined by 

equation (18) using the initial conditions of the drive 

(equation (6)) and response (equation (7)) systems as: 

)01.0,02.0,01.0(),,( 321 xxx
 

and 

)09.0,01.0,03.0(),,( 321 yyy , respectively, with 

a time step of 0.001. To ensure all the state variable of the two 

systems undergo chaotic dynamics, the value of the real 

positive constant parameter a is fixed as 2.0a . The 

simulation results for the synchronization of two Sprott I 

systems (Equations (6) and (7))are presented in Figures 5 and 

6. Fig. 5(a-c) shows the state trajectories of the drive 

(Equation (6)) and the response (Equation(7)) systems with 

different initial conditions, with continuous red and green 

lines indicating the trajectories of the drive and the response 

variables, respectively. Fig. 5 shows that the systems are in 

unsynchronized states from the unset of their dynamics, but 

immediately the controller was activated at 500t  the 

trajectory of the response tracks with that of the drive and as 

such both trajectories became perfectly superposed on each 

other  at a time 500t giving a false indication that the 

trajectories collapsed into a single trajectory (which is that of 

the drive)for a pair of comparable system variables

),(),,( 2211 yxyx  and ),( 33 yx shown in Fig. 5 (a), (b) 

and (c), respectively.  This clearly means the systems were in 

unsynchronized state within 5000  t , and in 

synchronous state within 1000500  t . 

The error dynamics between the drive and the response 

system (obtained from equation (8)) before and after the 

controller was switched on is shown in Fig. 6. The error 

vector shows chaotic dynamics with time when the controller 

is not activated, and when the controller is switched on at 

500t  the error vector converge to equilibrium point as 

shown in Figure 6(a)-(c), thereby guaranteeing the 

synchronization of systems (6) and (7).The time evolution of 

the synchronization norm (equation (19)) validates that the 

two chaotic systems became synchronized when the controller 

was switched on as presented in Fig. 6(d). 
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Fig. 5: The time response of the state variables ),,( 321 xxx  of the drive system (Equation (6)) with continuous green 

lines and the corresponding state variables ),,( 321 yyy  of the response system (Equation (7))with continuous red lines 

showing the controller was activated at 500t  for (a) ),( 11 yx , (b) ),( 22 yx  and (c) ),( 33 yx  

 

 

Fig. 6: Error dynamics between the variables ),,( 321 xxx  of the drive system (6) and their corresponding variables 

),,( 321 yyy  of the response system (7) showing the controller was switched on at 500t  for (a) 111 xye  , (b) 

222 xye  , (c) 333 xye   and (d) the synchronization norm  e  using Equation (19) 

 

 

Fig. 7: Sprott I system masking communication; (a) input/information signal , (b) encrypted signal  and (c) 

output/decrypted signal  (d) the decrypted signal activated at time 500t  and,  (e) decryption error er
corresponding to Figure 7(d) 
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Chaotic masking application to secure communication 

The sensitivity to initial conditions and randomness which are 

associated with chaos can be leveraged upon in engineering 

applications, particularly in the field of secure communication 

where information is being protected by embedding it in 

chaotic signals during transmission. Synchronization and 

encryption are major processes that are necessary for 

implementation of chaotic secure communication. To achieve 

encryption with chaotic signals, information signals are mixed 

with chaotic carrier signals through mixing algorithm known 

as chaotic masking scheme. Many mixing algorithms such as 

additive masking and multiplicative masking had been used in 

order to achieve chaotic masking (Onma& Akinlami, 2017; 

Onma et al., 2017; Busawon et al., 2018; Hreshee et al., 2018; 

Adel Ouannas, 2021). 

In this work, additive encryption masking scheme is 

employed to demonstrate the application of chaos to secure 

communication. The information signal (input) used is a 

periodic function of the form  and the 

chaotic carrier chosen is the drive variable 1x  of the Sprott I 

system given by Equation (6). The masking algorithm

1)()( xtitie  gives the encrypted information )(tie  

which is used in place of variable 1x  of the drive system, so 

that the information signal is masked in the encrypted 

information at a variable of the transmitter. Conversely, to 

retrieve the information at the receiver (output), the decrypted 

information )(tid  is obtained from the inverse function 

1)()( ytiti ed  , where 1y  is a variable of the response 

system (see Equation (7)) corresponding to the location of the 

encrypted signal in the drive. Here, the drive is regarded as the 

transmitter while the response is the receiver. Transmission of 

information from the transmitter to the receiver is achieved 

viathe synchronization of the drive system which contains the 

encrypted information and the response system via a coupling 

channel. The coupling channel used is our designed active 

backstepping controller, and the effectiveness of the 

communication scheme is shown in Fig. 7. Fig. 7(a–c) shows 

the sinusoidal wave form of the periodic information signal 

, the encrypted chaotic masking signal  which is 

being transmitted and the retrieved signal (decrypted signal) 

, respectively. For a clearer picture of the process, the 

inverse function for the decrypted signal is activated at time 

500t , and the corresponding decryption error is 

computed from )()( titier e . 

Clearly, it can be observed from Figure 7(d) that the 

information signal is masked in chaotic signal between 

5000  t  before we initiated decryption process, and 

the decrypted signal at 500t  is the transmitted sinusoidal 

information. Also, the decryption error presented in Fig. 7(e) 

shows the error dynamics approaches zero immediately the 

decryption function was activated (at 500t ), and it 

eventually settled at zero confirming the chaos dies out at 

500t , and the retrieved output information is the 

multistable periodic function (the input).  Finally, the 

encrypted chaotic information can be decrypted to retrieve the 

input information at any time and the dynamics of the 

decrypted error validates the usefulness of this process in 

secure information. 

 

 

 

Conclusion 
In this work, we have analyzed the Sprott I chaotic circuit 

using numerical simulation, and achieved circuit realization 

using electronic circuit simulator (MultiSIM) as well as 

physical implementation with real electronic components 

connected to an oscilloscope. The oscilloscope results of the 

attractors from the designed circuit were in agreement with 

simulations from the mathematical model. Active 

backstepping technique was applied to synchronize two 

identical chaotic Sprott I systems evolving from differential 

initial conditions. The designed controller robustly 

synchronized the two Sprott I systems. The synchronization 

results were extended to secure communication and we 

explained the possibility of applying the results to secure 

information using additive encryption masking scheme with 

chaotic wave form  as carrier and  as the information 

signal. The numerical simulations demonstrated the validity 

and effectiveness of the proposed controller. Hence, these 

results can be applied in practical applications such as 

cryptosystem, encryption, neural networks and secure 

communication. 
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